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HEAT TRANSFER THROUGH DROP CONDENSATE 

USING DIFFERENTIAL INEQUALITIES 
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Abstract-The quasisteady Nusselt number for a drop of condensate is calculated analytically for an 
arbitrary contact angle in the range [0, n/2] using a spherical segment geometry. Uniform base temperature 
is assumed and to ensure the boundedness of the total heat flux the convection boundary condition is used at 
the free surface. Differential inequalities are used to obtain error bounds which approach zero as the contact 
angle tends to n/2. For small contact angles the calculated Nusselt number tends to the exact value for a flat- 

disk droplet. 

NOMENCLATURE 

Biot number; 
spatial domain defined by the 
interior of the droplet; 

boundary defined by the flat base of 

the droplet ; 
boundary defined by the free surface 
of the droplet ; 
heat-transfer coefficient at the 
liquid-vapor interface 
(free surface) ; 
thermal conductivity of the droplet 
liquid ; 
Nusselt number ; 
difference between the bounds on Nu ; 

Legendre polynomial of the first 
kind, It t h order ; 
total heat flow through the droplet: 
upper bound on Q ; 
lower bound on Q ; 
local heat flux across the base ; 
upper bound on q ; 
lower bound on q; 

base radius of the droplet; 

radius of curvature of droplet ; 
dimensionless radial coordinate ; 
dimensionless position vector; 
temperature distribution in the 
droplet; 

upper bound on T : 
lower bound on T; 

ambient temperature; 

base temperature distribution ; 
constant base temperature; 

T,,,,!, exact temperature distribution 
for the proposed model ; 

i,, upper bound on T, ; 
TX lower bound on Th; 
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AT, difference between the vapor and 

the base temperature ; 

4 time. 

Greek symbols 

8, angular coordinate; 

8 

;p’ 

contact angle; 
latent heat of vaporization of 

droplet liquid ; 

/A case; 

PO3 cos e. ; 

P3 density of droplet liquid. 

1. INTRODUCTION 

THE SIGNIFICANTLY higher heat flux observed for 

dropwise (as opposed to filmwise) condensation has 
inspired considerable research effort to better under- 

stand the fundamental aspects of droplet formation 
and growth. Although the process is exceedingly 
complex, some simplification of the analyses is possible 
using the results of Graham and Griffith [l] who 
showed that most of the heat is transferred through 
droplets of diameter less than 100 urn. For such small 

droplets the influence of gravity on the droplet shape is 
negligible and a spherical-segment geometry may be 
assumed. If it is further assumed that the heat transfer 
and droplet growth are quasisteady the process is 
governed by the steady heat-conduction equation and 
an analytic formulation can be completed with various 
boundary conditions. 

Fatica and Katz [2] and others [3,4] used constant- 
temperature boundary conditions on the droplet base 
and free surface for arbitrary contact angle. However, 
the discontinuity in the boundary temperature along 
the edge of the base prevents the computation of a 
finite value of the heat flux (see Appendix B). Valid 
solutions for the heat flux (required to compute the 
droplet growth) can be obtained by requiring that the 
boundary temperature be continuous. This condition 
can be achieved by assuming a convective boundary 
condition with a finite heat-transfer coefficient on the 
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free surface. Umur and Griffith [.5] used this boundary 
condition together with uniform base temperature to 
obtain an exact solution for a hemispherical droplet 
which corresponds to a contact angle of 90”. Hemi- 
spherical droplets were also analyzed by Hurst and 
Olson [6] using the finite element method and they 
overcame the temperature discontinuity problem by 
considering heat conduction through the condenser 
plate as well as the droplet. However, for different 
contact angles the only valid results were obtained 
nume~cally by Ahrendts [7]. 

In the present analysis the theory of differential 
inequalities [8,9] is applied to obtain approximate 
solutions which are upper and lower bounds for the 
exact solutions of the temperature distributions in 
droplets of arbitrary contact angle 0 < 8, < n/2. Here 
the exact solution is defined as the one corresponding 
to zero base temperature and a convective boundary 
condition at the free surface. It is further shown that 
these approximate solutions become exact for O0 = 0 
and 0, = n/2. Upper and lower bounds on the droplet 
heat flux are also derived and finally an approximate 
expression for the dropiet Nusselt number as a func- 
tion of the Biot number and contact angle is presented 
with rigorous error bounds. 

2. MATHEMATICAL FORMULATION 

The growth of a single droplet depends on the 
overall heat flux and, hence, it is necessary to find the 
droplet temperature distribution T*(r*). As a reason- 
able physical model it is assumed that the base of the 
droplet is at constant temperature TbO and that the free 
surface is exposed to constant ambient temperature T,. 
Under the quasisteady assumption the dimensionless 
temperature 

T(r) = (T* - &*)/AT (where AT = T, - To) 

at any instant of the development of a droplet of radius 
R’ is the solution to 

V’T(r) = 0 in D 

T(r)lpD, = 0 

(1) 

(2) 

(3) 

FIG. 1. Definition sketch for model. 

where D is the interior of the droplet, aD, is the flat 
base of the droplet, JDZ is the free surface of the 
droplet, k is the thermal conductivity of the droplet 
liquid, h is the heat-transfer coefficient at the free 
surface, T(r) is the dimensionless temperature distri- 
bution, aT(r is the outward normal derivative, and 
r = P/R’ is the dimensionless position vector. 

If spherical coordinates are used for this problem, 
the boundary dD, cannot be defined by a single 
coordinate except in the special case of a hemisphere 
(see Fig. 1). Consequently, the boundary condition (2) 
cannot be exactly satisfied except when the droplet is a 
hemisphere. However, it can be approximately satis- 
fied in this coordinate system if a sphere in a discon- 
tinuous ambient temperature is considered as follows 

1 a 
V’T(r, p) = - - 

P2 dr 

where T,(p) is the ambient temperature and p = cos 0. 
in the region aD, the equations (3) and (5) must be 
identical and therefore, if B0 is the contact angle, then 

7&f = 1 for p. -c P G 1, 

where p0 = cos 8,. 

16) 

Over the rest of the surface of the sphere T,(p) must 
be chosen so that (2) is satisfied, at least approxi- 
mately. Even if nonzero constant base temperature is 
found the condition (2) can be satisfied by subtracting 
that constant and scaling the resulting function. There- 
fore, the problem now is to lind T,(p),- 1 < p -c pLo 
such that the base temperature is as uniform as 
possible. If as a first attempt it is assumed that 

T,Mt)=O -1 <P<Po. (7) 

b cr, 

71 
-I 

Fro. 2. Ambient temperature distributions: (a) trial, (b) used 
to obtain solutions. 
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(see Fig. 2a) then for large but finite values of h the 
temperature at the edge of the droplet T(1, p,,) takes on 
approximately the average value of T,(p) at p,= pco for 
any pO, i.e. 

W PO) = t. (8) 

The temperature at the centre of the base is also close 
to l/2 for p0 _ 0, i.e. contact angle 0, N n/2. However, 
as Q0 approaches 0, this temperature approaches unity 
and since the edge temperature is close to l/2 for all 
contact angles, the uniformity of the base temperature 
becomes quite poor. Thus to assure uniformity of the 
base temperature, the edge temperature must increase 
with decreasing 0,,. This may be achieved by weaken- 
ing the discontinuity in T,(p) at p = I*,, by increasing 
T,(p) linearly with p from T,(O) = 0 to a suitable 
constant T&A,,) = /Q,,) depending on pLo as p in- 
creases from 0 to pO, i.e. 

1 

1 Po<P< 1, 

K(P) = B(Po)P/Po 0 < P < PO, (9) 

0 -l<p<O, 

(see Fig. 2b). 
For B. = n/2 (i.e. p. = 0) equation (7) leads to 

uniform base temperature and no correction for T,(p) 
is needed. Therefore, in order that (7) and (9) be 
identical for p. = 0, it is necessary that p(O) = 0. Since 
the temperature at the centre of the base approaches 
unity as B. + 0, good uniformity of the base tempera- 
ture can be achieved by requiring that the edge 
temperature also approaches unity for Qo+O and this 
makes it necessary that p(l) = 1. Under these con- 
ditions. a suitable expression for /?(po) is found to be 

2co. ’ II,) 

fi(po)= l-2co;lP0 , 

i.e. 

fl((),) = I I 1 _ 28, ’ 21)11in. 
77 

(10) 

Using the expression (9) for T,(p) in equation (5) the 
following expression for T(r, p) is found 

T(r, P) = a0 + i a,,r”P,,(P) (11) 
,1= 1 

where 

a, = 81 --PO) +aBP& (12) 

a 
1 

= tc1 -/&+tsfi; 

1 +(l-&)“/Bi’ 
(13) 

Here the Biot number is defined in terms of the base 
radius R as 

B; _ E Wl-~i?)~‘~ 

k- k 
(15) 

It is now appropriate to consider how well the solution 
(11) satisfies the boundary condition (2) on the base of 
the droplet. After substituting the relation defining the 

base 

r = PO/P (16) 

into (11) the expression for the base temperature 7;,(p) 
is 

2-J/.4) = a,+Ca, k c ) ” 

P,,(P). 
P 

(17) 

which is presented in Fig. 3 for various values of the 
Biot number and selected contact angles Bo. 

“-3 

IO 15 20 25 30 
8, degrees 

-I- I 
e 

61.20 Big5 Bi=2 

2 
/ A 

, 0 , 7 

C 0.511 

H / / / 
Bi=l BicO.5 Bi=<.2 Bi=0.05 

(b) , I I I , 8,=60° 
0 IO 20 30 40 50 60 

8. degrees 

FIG. 3. Base temperature distributions as a function of .G for 
different Biot numbers: (a) contact angle n/6, (b) contact 

angle x/3. 

UPPER AND LOWER BOUNDS 

If now for a given value of e. and Bi, the minimum 
base temperatures is subtracted from T(r, p) and the 
resulting function divided by a scaling factor [ 1 - T,], 
the following function is obtained 

(18) 

and 

Pb(Po) + Pbo) (1 -P3[P,,(Po) - ~op:t(Po)l -P,,(O) 

(2n+l) 
(l-&p -. 

ri(n+l) p. n(n+l)-2 
a,, = - 

2 
1+ 

n(l-&)“2 ’ 

Bi 

(14) 

n = 2, 3, 4, . . . 
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This function exactly satisfies the differential equation 

V’?(r./()=O in D (19) 

and one of the boundary conditions 

On dD, (i.e. the base), 

06 7(r,P)IiD, (21) 

by the definition ofT,, i.e. the base boundary condition 

is satisfied only as an inequality. If the boundary 
conditions (2) and (3) are written in operator form 

R[T,,,,, (r, ~11 

(22) 

then 

while 

R[T,,,,, (r, ~01 < B[T Ir, ~11 (23) 

-V’T (r p) = -V2i (r, p) = 0. ex‘lct 3 (24) 

By applying the theorem stated in Appendix A, it can 
be shown that as a consequence of (23) and (24) 

T,,,,, (r, P) < 7 (r. cc), (25) 

i.e. 7 (r, p) is the upper bound to the unknown exact 
solution T,,,,, (r, p) which satisfies (I), (2) and (3). 

Similarly, by defining the function 

_T(r, 11) = 
T(r, AI) - i,, 

1 -7,, - 
(26) 

where 7; is the maximum base temperature, it can be 

shown that 

V’_T(r. p) = 0 in D. (27) 

(28) 

and that 

_T(r, P)I,-“, 6 0. (29) 

Again, application of the theorem, leads to the result 
that 

..I@. P) < T,,,,, (r, II). (30) 

From these upper and lower bounds for the tem- 
perature, the bounds for the heat flux q(p) and the total 
heat flow Q can be calculated as follows. 

Since 

(31) 

(32) 

and 

h[T(l,~)-11~ h[T,,,,,(l,~)-11 

< h[7(1,/+1]. 

By definition 

(33) 

q(p) = -h[T,,,,,,(t.~)-1lAT 

and ify(p) and q(p) are defined as _ 

(/(P) = -h[T(l,~)-l]AT 

and 

(34) 

(35) 

then 

y(p) = -h[7 (LP)-l]AT (36) 

4(P) 6 4(P) < (,(I,). 

Consequently, the total heat flow Q has the bounds 

Q = -27rR” 1”“’ &)dfi 
. I 

.,,11 
<Q< -2rtRt2 (/(/Odp = Q (37) 

. 1 

where after integration it is found that 

x (l-%)-(1 +/lo) c ~ 
“=, n(rr+l) 

AT (3X) 

and 

2nRr2h 
Q=-- 1_7 (l-/-b) 

h 

K %C,(Po) 
x (l-ao)-(l+p,) c ~ 

n=I rr(r7+1) 
AT. (39) 

4. DROPLET NUSSELT NUMBER 

By defining the Nusselt number as 

Q 
Nu=-- 

kRAT ’ 

it can be shown that 

___ < ,‘,Iu < f(po) f’bo) 

‘-3 ‘1’ 
where 

2lrBi 

(40) 

(41) 

The quantities 2 and 7, appearing in the inequality 
(41) have to be determined numerically for each value 
ofp, and Bi. Since the base temperature Th(p)is almost 
uniform (see Fig. 3) both 7, and 3 can be approxi- 
mated by the temperature T,,(p,) at the edge for which 
case 

i,, = Tf, - T,(Po) = i %P,,(Po). 143) 
II = 0 
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The Nusselt number can then be approximated as 

Nu 1 .f(Po) 

1 - Th(Po) 
i.e. 

21rBi 
Nu zz - 

(1 +/Jo) 

w ~LfY,(PO) 
(1 -no)- (1 +/Lo),r;, rl(rr 

X ---. 
I m I 

(44) 

I (1 --Go)- G %Ptr(iUo) 
11’1 

This expression for the Nusselt number is valid for 
all values of the contact angle 8, = cos-1 pi0 in the 
range [0, n/2] and is presented as a function of go for 
values of the Biot number ranging from 0.05 to 20.0 in 
Fig. 4. As B. approaches 0, the Nusselt number 
approaches the exact value nBi for a flat-disk droplet. 

. Ahrendts’[7] results 
- present analysis 

0) - 

t 

- .2 
I t _I 

O.fI ’ ’ ’ ’ ’ ’ ’ ’ 1 0 10 20 30 40 50 60 70 80 90 

Contact angle, degrees 

FIG. 4. Nusselt number as a function OF contact angle for 
different Biot numbers. 

Also, a comparison of these results with those obtained 
by Ahrendts [7] shows good agreement. It is interest- 
ing to see that for Bi - 1, the Nusselt number is almost 
invariant with the contact angle and, hence, experi- 
ments which are independent of this parameter are 
possible. 

5. ERROR BOUNDS FOR NIJSSELT NUMBER 

An expression for the maximum error can be 
obtained from equation (41). The difference between 
the upper and lower bounds for Ntc is giuen by 

ANu = f‘(P0) .f(llo) --- 
1 - i,, 1-3 

(45) 

from which the maximum error becomes 

ANu i,, - ?;, ~~~~----===~ 
min(Ntr) i-i,, (46) 

This bound on the error tends to zero, as 0, ap- 
proaches n/2 because in this case 7, = 7, = +, i.e. for 

B. = $2 the expression (44) for Nu is exact and for 
other contact anglesclose to n/2, E is a good estimate of 
the error. However, for small contact angles E becomes 
quite large but the actual error is quite small since Nu 
given by (44) also approaches the exact value for 0, 
= 0. 

6. ESTIMATE OF DROPLET GROWTH RATE 

Under the quasisteady approximation used here, it 
can be assumed that the heat conducted through the 
droplet is equal to the heat transferred to it by 
condensation. Therefore, if I is the latent heat of 
vaporization, then 

Q=Gg_ (47) 

where p is the density of the droplet liquid and C’ is the 
volume of the droplet. 

Now in terms of the base radius R and the contact 
angle parameter p. 

dV d 1 
-~- -nR3 (1 -PoY(2 fP0) 

dt dt 3 (l-&)3 2 ’ 

i.e. 

dV 
-.--=~R2 (1-~0)~(2+~0) dR 

-. 
dt (1 -P;)~ ’ dt 

(48) 

By making use of (40), (44), (47) and (48) it is not 
difficult to show that the droplet base radius increases 
at the rate 

dR 2/l 
--AT- 

(1 SPo)l 2 

dt &J (1 -P0)“2(2fPo) 

m %K(Po) 1 

(l-aa~-(l+po),,~, 11(11$1) 1 
X 

(1 -ao)- : @“(PO) 

* (49) 

n=, 

7. DRXXJSSION 

The mathematical model presented in this study is 
limited to cases in which the heat-transfer coefficient at 
thk free surface (i.e. at the liquid-vapour interface) is 
finite. The case of infinite heat-transfer coefficient, i.e. 
zero interfacial resistance, may be physically possible 
and in such a situation, because the model predicts 
zero overall resistance across the droplet, further 
improvement is necessary. The difficulty arises in 
assuming a uniform base temperature which is a valid 
approximation if the resistance between the base and 
the coolant is negligible compared to the 
liquid-vapour interfacial resistance or if the condenser 
thickness is of the same or higher order as the droplet 
size [6]. For the physically impossible case in which 
the resistances at both the interfaces are zero, the edge 
temperature is discontinuous and the overall droplet 
resistance is also zero. Fatica and Katz [2] were able to 
find non-zero resistance in their analysis because they 
divided the droplet into a finite number of elements 
and added the resistances of the elements. However, it 
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can be shown that in the limit of the number of 
elements going to infinity the calculated resistance 
must go to zero. Sugawara and Michiyoshi [4] and 

Nijaguna [3] also obtained nonzero resistance and in 
their cases the error was due to the premature 
truncation of the divergent series representing total 

flow (see Appendix B). 
In the analysis by Umur and Griffith [5] a relation 

between the droplet radius of curvature and time was 
given for an arbitrary contact angle. This relation 
implies a nonzero total resistance in the limit of the 
liquid-- vapor interfacial resistance going to zero. This 

nonzero resistance is quite meaningless from a math- 
ematical point of view, unless it contains some 

parameters related to the condenser-surface resistance 
which it does not. 

The good agreement between the results of the 
present analysis and the numerical solutions of 

Ahrendts [7] provides mutual confirmation. The 
analytic solutions have the usual advantages over the 

numerical results but more importantly they are also 
the groundwork for further contributions exploiting 
the use of differential inequalities for the analysis of 
droplets. Indeed, results similar to Appendix A are 

available for the usual parabolic operators which 
describe most diffusion-controlled mechanisms for 
heat and mass transfer, e.g. [lo]. 
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APPENDIX A 
Theorem (Adaptedfrom [8] ) 

Let E be an elliptic differential operator defined in the 
domain D and let B be a boundary operator defined on the 
boundary dD by 

B[o] = 
(Al) 

._ 

where dD = aLI, Ui?D,. w is a continuous function in D, a is a 
non-negative function on ?D, and d/?n is the outward normal 
derivative. 

Let u and o be continuous functions in D such that E[u]. 
E[u], B[u] and B[u] all exist. 

If 

-E[u] < -E[u] and B[u] < B[u]. (A2) 

u < 1’. (A31 

APPENDIX B 
Unboundedness of Total Heat Flowfor 
Discontinuous Boundary Temperature 

For a hemispherical droplet with zero base temperature 
and unit temperature on the free surface, the total heat flow, 
Q through the droplet is given by [3,4] 

(2n+2)224”(n!)4 ’ 
(Bl) 

where k is the thermal conductivity of the droplet liquid, and 
R is the base radius. 

It is not difficult to see that 

(4n+3)[(2n)!12(2n+ 1) ~ (3n+3)(n+ ll[(2n)!]’ 

(2n + 1 )*24”(n !)4 (2n+2) 224”(n!)” 

(BZI 

However, the complete elliptic integral of the first kind is 
given by 

J 
‘WZ 

K(z) = 
d4 = 7[ i; t-l,.ct,,__*,, (B3) 

0 (1 -zZsin24)‘:2 2 n=O (l),n! 

Therefore, by letting z = 1 in (B3) and using (Bl) and (B2) 
one can show that 

Q *n.‘Z d+ 

-23 -= 
kR J 0 COST 

Therefore. 

Q + m for kR > 0. (B4) 

TRANSFERT THERMFQUE PAR CONDENSATION EN GOUTTES EN 
UTILISANT DES INEGALITES DIFFERENTIELLES 

R&urn&-On calcule analytiquement le nombre de Nusselt quasi statique pour une goutte de condensat. 
avec un angle de contact arbitraire, dans le domaine [0, z/2] et en utilisant un segment sphtrique. On 
suppose une temp&rature uniforme g la base et, pour assurer la conservation du flux thermique total, 
on utilise la condition de convection a la surface libre. On utilise des in&galitCs diffirentielles pour 
obtenir des limites d’erreur qui tendent vers ztro quand I’angle de contact tend vers n/2. Pour des petits 
angles de contact le nombre de Nusselt calculk tend vers la valeur exacte correspondant g une goutte 

en forme de disque plat. 



Heat transfer through drop condensate 

DIE BERECHNUNG DES WARMEOBERGANGS IN KONDENSATTROPFEN 
MIT HILFE VON DIFFERENTIAL-UNGLEICHUNGEN 

1407 

Zu~rn~f~~g-Unter Vorau~etzung einer ku~~~~igen Ober&iche wird die quasistation~e 
Nusseit-Zahl fiir einen Kondensuttropfe~ mit beliebigem Randwinkel zwischen 0 und 217 analytisch 
berechnet. Die FuBtemperatur wird als gleichftjrmig angenommen; an der freien Oberfllche wird die 
Randbedingung dritter Art angesetzt. Mit Hilfe von Differential-Ungleichungen werden Fehlergrenzen 
abgesteckt ; mit Anniiherung des Randwinkels gegen 7r/2 gehen sie gegen Null. Fiir kleine Randwinkel nlhert 

sich die berechnete Nusselt-Zahl dem exakten, fiir einen flachscheibigen Tropfen giiltigen Wert. 

PACYET XAPAKTEP~~~~ IlEPEHOCA TEllJ’lA YEPEJ KA~~bHbI~ 
KOHAEHCAT C llOMOI.QbK) ~~~~EPEH~~A~bHblX HEPABEHCTB 

ARUOTal&HR-- &OOJIb3yf! C&ZpH4eCKyto I-eOMeTpHf0 CeRvieWTit, pZlCC4HTMBEieTCK aHaJiBTli4eCKw 

KBa3HcTal&ioIiapHoe 4HCRO HyccenbTa itJul Xaruln KoHfiewaTa IIpSi ilpO&i330J%dfOM 3Ha4emiK Kpae- 

~oro yrna B gHana30He [O, 421. &3iaeTcsi ~0~y~eHHe 0 rmcro5isao# lehcnepaType y OCHOB~HHR 
icannw, a mui BblOonHe~~ ycnoe~51 0rpa~K~eHH~~ 06m,ero Tennomxo noroxca 3aivmo xiami4se 

K~HWKUA~~ Ha c~~~Ho~ nOBepXH0CT&f. ~~~~~~qK~bHb]e nepaeewrsa Kcnonb3y~TcK nsr 

nonynenwi nopora RorpelllHOCTe~, KOTOpbIfi npw6niimaeTcr K HySlW no h4epe TOTO, K'1K xpaeeoL 

yfOJl CTpeMBTCs K 42. finSi He6OJIblllHX KpaeBbiX yrJIOB paC4eTHOe YWCJ-IO HyccenbTaCTpe~aTCn K 

TO4HOMy 3fia4emm.wmKanmi B ~opMennoCKoronwcKa. 


